Rapid Reaction between Peroxonitrite Ion and Carbon Dioxide: Implications for Biological Activity

Sergei V. Lymar and James K. Hurst*

Department of Chemistry, Washington State University Pullman, Washington 99164

Received May 26, 1995

Superoxide ion reacts rapidly with nitric oxide in aqueous solutions to form the peroxonitrite (x)ONO₂⁻) ion.¹ This anion and its conjugate acid, hydrogen oxoperoxonitrate (ONO₂H), are powerful oxidants² which are reported to rapidly oxidize sulfhydryl groups³ and thioethers⁴ and to nitrate and hydroxylate aromatic compounds.⁵⁻⁷ In biological environments that are capable of simultaneously generating O₂⁻ and NO, uncontrolled formation of ONO₂⁻ has been proposed⁷ to cause oxidative damage to biological tissues, giving rise to a variety of pathogenic conditions that may include pulmonary^{8,9} and coronary¹⁰ diseases, impairment of central motor nervous system function,^{11,12} and injury to ischemic tissues accompanying reperfusion with aerobic fluids.^{13,14} Peroxonitrite has also been proposed to be an important microbicidal agent generated by phagocytic cells associated with host defense systems.^{15,16} However, ONO₂⁻ is also unstable in carbonate-containing media,^{17,18} and low concentration levels of HCO3⁻ have been shown to protect Escherichia coli from the toxic effects of ONO_2^- in *in vitro* bactericidal assays.¹⁹ We report herein that ONO₂⁻ reacts rapidly with CO₂, apparently forming an adduct whose composition is ONO₂CO₂⁻. The rate constant is sufficiently large $(3 \times 10^4 \text{ M}^{-1} \text{ s}^{-1})$ that this must be the predominant pathway for ONO_2^- disappearance in normal physiological fluids, where the total carbonate concentration is typically 25 mM or greater. It is therefore highly unlikely that ONO_2^- itself is damaging to cells, although it might be an obligatory intermediate for forming destructive cellular oxidants, i.e., ONO₂CO₂⁻ or its decomposition products.

* To whom correspondence should be addressed,

- (1) Huie, R. E.; Padmaja, S. Free Radical Res. Commun. 1993, 18, 195-199
- (2) Koppenol, W. H.; Moreno, J. J.; Pryor, W. A.; Ischiropoulos, H.; Beckman, J. S. Chem. Res. Toxicol. 1992, 5, 834-842
- (3) Radi, R.; Beckman, J. S.; Bush, K. M.; Freeman, B. A. J. Biol. Chem. 1991, 266, 4244-4250.
- (4) Pryor, W. A.; Jin, X.; Squadrito, G. L. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 11173-11177
- (5) Halfpenny, E.; Robinson, P. L. J. Chem. Soc. 1952, 1952, 939-946.
 (6) Beckman, J. S.; Ischiropoulos, H.; Zhu, L.; van der Woerd, M.; Smith, ; Chen, J.; Harrison, J.; Martin, J. C.; Tsai, M. Arch. Biochem. Biophys. 1992, 298, 438-445.
- (7) Beckman, J. S.; Beckman, T. W.; Chen, J.; Marshall, P. A.; Freeman, B. A. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 1620-1624.
- (8) Mulligan, M. S.; Hevel, J. M.; Marletta, M. A.; Ward, P. A. Proc.
- Natl. Acad. Sci. U.S.A. 1991, 88, 6338-6342. (9) Moreno, J. J.; Pryor, W. A. Chem. Res. Toxicol. 1992, 5, 425-431.
 (10) Beckman, J. S.; Ye, Y. Z.; Anderson, P. G.; Chen, J.; Accavitti, M.
- A.; Tarpey, M. M.; White, C. R. Biol. Chem. Hoppe-Seyler 1994, 375, 81-
- 88 (11) Beckman, J. S.; Carson, M.; Smith, C. D.; Koppenol, W. H. Nature
- 1993, 346, 584. (12) Dawson, V. L.; Dawson, T. M.; London, E. D.; Bredt, D. S.; Snyder,
- S. H. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 6368-6371. (13) Nowicki, J. P.; Duval, D.; Poignet, H.; Scratton, B. Eur. J. Pharmacol. 1991, 204, 339-340.
- (14) Matheis, G.; Sherman, M. P.; Buckberg, G. D.; Haybron, D. E.;
 Young, H. H.; Ignarro, L. J. Am. J. Physiol. 1992, 262, H616-H620.
 (15) Carrerras, M. C.; Pargament, G. A.; Catz, S. D.; Poderoso, J. J.;
 Boveris, A. FEBS Lett. 1994, 341, 65-68.
- (16) Ischiropoulos, H.; Zhu, L.; Beckman, J. S. Arch. Biochem. Biophys. **1992**, 298, 446–451. (17) Keith, W. G.; Powell, R. E. J. Chem. Soc. A **1969**, 1969, 90.
- 18) Radi, R.; Cosgrove, T. P.; Beckman, J. S.; Freeman, B. A. Biochem. J. 1993, 290, 51-57
- (19) Zhu, L.; Gunn, C.; Beckman, J. S. Arch. Biochem. Biophys. 1992, 298. 452-457.

Figure 1. Dependence of the apparent rate constant (b) for reaction between peroxonitrite and carbonate upon solution pH in various buffered media. Conditions: 200 mM phosphate (□); 150 mM pyrophosphate (O); 400 mM acetate (\diamondsuit). The solid line is the theoretical fit to the data assuming $k_2 = 3 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$; pK_a = 6.6; $pK_a' = 5.96$; these constants are defined in the text.

The disappearance of peroxonitrite was monitored at 302 nm (pH > 6) or 265 nm (pH < 6) in a Hi-Tech SF-40 stopped-flow instrument thermostated at 24 \pm 0.1 °C. The reaction was initiated by flow-mixing alkaline (pH > 11) solutions of $ONO_2^$ with buffered NaHCO₃; buffer concentrations and acidities were chosen to yield appropriate final pH values. In neutral solutions with HCO₃⁻ absent, peroxonitrite isomerized to nitrate according to the rate $aw^{7,17,20} - d[ONO_2]_T/dt = a[ONO_2]_T$, where $[ONO_2]_T$ $= [ONO_2^-] + [ONO_2H]$ and $a = k_1[H^+]/([H^+] + K_a)$. From the pH-rate profile (data not shown), values for the isomerization rate constant (k_1) and acid dissociation constant (K_a) of ONO₂H were determined to be 0.9 ± 0.05 s⁻¹ and 2.5×10^{-7} M, respectively, nearly identical to published values.^{7,17,20} In neutral solutions, the presence of carbonate accelerated ONO₂⁻ decay in a concentration-dependent manner. When carbonate was in large excess, this decay was exponential and obeyed the rate law $-d[ONO_2]_T/dt = (a + b[HCO_3]_T)[ONO_2]_T$, where $[HCO_3]_T = [HCO_3^-] + [CO_2]$. The pH dependence of the apparent second-order rate constant (b) exhibited a bell-shaped profile whose maximum appeared at pH \sim 6.2 (Figure 1). This pH dependence indicates that the actual reactant species are either CO_2 and ONO_2^- or HCO_3^- and ONO_2H , i.e., that the rate-limiting elementary reaction step in the carbonate-dependent pathway corresponds to either (1) $ONO_2^- + CO_2 \rightarrow ONO_2CO_2^$ or (2) $HCO_3^- + ONO_2H \rightarrow$ products. The corresponding rate law terms for these reactions are $b = k_2/[(1 + [H^+]/K_a)(1 +$ $K_a'/[H^+])$ and $b = k_2'/[(1 + K_a/[H^+])(1 + [H^+]/K_a')]$, where K_a' is the constant for the CO₂ hydration-dehydration equilibrium, $CO_2 + H_2O \rightleftharpoons H^+ + HCO_3^-$, and k_2 and k_2' are the rate constants for reaction steps 1 and 2, respectively. Under the prevailing conditions, $K_a^{\prime} = 1.1 \times 10^{-6} \text{ M.}^{21}$ In general, it would not be possible to identify the actual reactants from kinetics alone because the rate laws are homomorphic. However, in neutral solutions the hydration-dehydration equilibrium is slowly established relative to the rate of ONO_2^{-} decay (at pH 7-8, the equilibration half-time²² is \sim 25 s), so that it is possible by conducting pH-jump experiments to distinguish between CO_2 and HCO_3^- as reactants. In one type of experiment, acidic solutions containing dissolved CO₂ were rapidly mixed with alkaline solutions of ONO₂⁻ to give neutral solutions in which the transitory CO_2 concentrations were much higher than their equilibrium values. A typical result is

1031 (22) Kern, D. M. J. Chem. Educ. 1960, 37, 14-23.

⁽²⁰⁾ Edwards, J. O.; Plumb, R. C. Prog. Inorg. Chem. 1994, 41, 599-635

⁽²¹⁾ Harned, H. C.; Bonner, F. C. J. Am. Chem. Soc. 1945, 67, 1026-

Figure 2. Stopped-flow kinetic traces of peroxonitrite ion decay. Trace 1 (solid): NaONO₂ and 5 mM carbonate in NaOH (pH 12) mixed with 400 mM phosphate (pH 7.4). Trace 2 (dashed): NaONO₂ in 180 mM phosphate (pH 12) mixed with 220 mM phosphate (pH 5) with no added carbonate. Trace 3: NaONO₂ in 20 mM phosphate (pH 12) mixed with 5 mM carbonate in 380 mM phosphate (pH 7.5). Trace 4: NaONO₂ in 180 mM phosphate (pH 12) mixed with 5 mM carbonate in 220 mM phosphate (pH 5). For all experiments, 1:1 reactant volumes were mixed, the pH after mixing was 7.6, and the initial ONO₂⁻ reactant concentration was \approx 500 μ M.

illustrated in Figure 2. Here, rates of ONO₂⁻ decay are compared under identical medium conditions (200 mM phosphate, pH 7.6) for 500 μ M ONO₂⁻ with no added carbonate (trace 2), with 2.5 mM HCO₃⁻ under near-equilibrium conditions (~75 μ M CO₂, trace 3), and with ~2.25 mM CO₂ plus 0.25 mM HCO_3^- (trace 4). The rate of reaction increased proportionately with the CO₂ concentration, establishing that ONO_2^- and CO_2 comprise a reactant pair. The possibility that ONO₂H and HCO₃⁻ also comprise a reactant pair was investigated by a second type of pH-jump experiment in which alkaline solutions containing both CO_3^{2-} and ONO_2^{-} ions were mixed with acidic solutions containing only buffer to give neutral solutions that were initially devoid of CO2. Rapid catalysis of ONO₂⁻ decay was not observed under these conditions (Figure 2, trace 1). Kinetic analyses indicated that the rate of this reaction was controlled by the rates of HCO₃⁻ dehydration and spontaneous isomerization of ONO₂^{-.23} Thus, direct reaction between the species HCO3⁻ and ONO₂H must be slower than these processes. This experiment was possible because CO_3^{2-} was also found to be unreactive toward ONO_2^{-} , i.e., addition of carbonate to alkaline (pH >11) solutions of ONO2⁻ did not accelerate its very slow intrinsic rate of decomposition. Additional evidence indicating that CO₂ and ONO_2^- comprise a reactant pair, but ONO_2H and HCO_3^- do not, is that biphasic kinetics were always observed when solutions containing excess HCO3⁻, but limiting CO2, were mixed with solutions of ONO_2^- (data not shown). The breakpoints of these kinetic curves corresponded to the amount of CO₂ initially present in the solutions; they indicate that when exposed to ONO_2^- the existing CO_2 is rapidly consumed,

following which the reaction becomes limited by the rate of CO_2 generation by dehydration of HCO_3^- .

The rate constant for reaction between ONO_2^- and CO_2 calculated from a series of pH-jump experiments is $k_2 = (2.9)$ \pm 0.3) \times 10⁴ M⁻¹ s⁻¹; the value determined from the fit to the pH-rate profile (Figure 1) was $k_2 \simeq 3.0 \times 10^4 \,\mathrm{M^{-1} \, s^{-1}}$. These values are comparable to the largest rate constants reported for reaction of ONO_2^- with organic compounds³⁻⁷ and indicate that carbonate should effectively scavenge any peroxonitrite ion generated in biological fluids. This follows because the CO₂ concentration in these environments is at least 10²-fold greater than that of other potential reactants. This high reactivity can be attributed to strong electrophile-nucleophile interactions between the electron-deficient central carbon atom in CO₂ and the nucleophilic terminal oxygen atom of the ONO₂⁻ peroxo group. In contrast, the absence of detectable reactivity between ONO_2H and HCO_3^- is attributable to their considerably reduced nucleophilic and electrophilic character. Although the electronwithdrawing N=O substituent reduces the peroxo group nucleophilicity relative to other peroxo anions,²⁰ e.g., HO₂⁻, it also reduces its basicity, allowing the reactant pair ONO_2^- and CO_2 to be present simultaneously in neutral solutions at concentration levels that are sufficiently high to ensure a large overall reaction rate between them. In contrast, more basic peroxides that might form analogous peroxocarbonates, e.g., HO_2^- , would be considerably less reactive toward CO_2 because they exist primarily in their unreactive conjugate acid forms (H_2O_2) in neutral solutions. Formation of ONO_2^- might therefore serve the unique function of allowing entry into a pathway for generating peroxide-based toxins that is not accessible by H_2O_2 itself in physiological environments.

The chemistry of the putative $ONO_2CO_2^-$ adduct is unexplored; however, homolytic cleavage of the weak peroxo O-O bond would give rise to the toxic HCO₃ radical,²⁴ and heterolytic cleavage would yield NO_2^+ , which is a highly reactive nitrating agent. Formation of either of these products appears to be thermodynamically feasible.²⁵ We have also recently found that carbonate is an effective catalyst for ring nitration of aromatic compounds by ONO_2^- in neutral aqueous media. The actual nitrating agent in these reactions appears to be the $ONO_2CO_2^-$ intermediate (or $ONO_2CO_2H)$.²⁶ In any event, the results presented here clearly demonstrate that considerations of the biological function of ONO_2^- must include its reaction with CO_2 .

Acknowledgment. This work was supported by the National Institute of Allergy and Infectious Diseases under Grant AI15834.

JA951715I

(27) Moodie, R. B.; Schofield, K.; Taylor, P. G. J. Chem. Soc., Perkin Trans. 2 1979, 1979, 133-136.

⁽²³⁾ Under these conditions, CO_2 is in a steady state and $ONO_2^$ disappearance follows the rate law $[ONO_2]_7 = [ONO_2]_0 \exp(-at) - (R/a)[1 - \exp(-at)]$, where $[ONO_2]_0$ is the initial peroxonitrite concentration and R is the rate of HCO_3^- dehydration under the prevailing conditions.²² The first term on the right side of the equation is for spontaneous isomerization of ONO_2^- , and the second is for its reaction with CO_2 .

⁽²⁴⁾ Wolcott, R. G.; Franks, B. S.; Hannum, D. M.; Hurst, J. K. J. Biol. Chem. 1994, 269, 9721-9728.

⁽²⁵⁾ Calculations based upon reported thermodynamic data² indicate that $\Delta G^{\circ\prime} = 7.3 \pm 5.5$ kcal/mol for the reaction $CO_2 + ONO_2^- + H^+ \rightarrow NO_2^- + HCO_3$ and that $\Delta G^{\circ\prime} = 3.8 \pm 6.9$ kcal/mol for the reaction $CO_2 + ONO_2^- + H^+ \rightarrow NO_2^- + H^+ \rightarrow NO_2^+ + HCO_3^-$ (both at pH 7.0). (26) From the kinetics and yield of carbonate-catalyzed nitration of

⁽²⁶⁾ From the kinetics and yield of carbonate-catalyzed nitration of fluorescein by ONO_2^- , the lower limit for the lifetime of the nitrating agent is estimated to be $t_{1/2} > 120$ ns. This value is almost 2 orders of magnitude greater than the estimated lifetime of NO_2^+ in water $(t_{1/2} \simeq 1.4 \text{ ns})^{27}$ eliminating NO_2^+ as the nitrating agent and leaving $ONO_2CO_2^-$ or its protonated form as the most likely alternative.